If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-16y+61=0
a = 1; b = -16; c = +61;
Δ = b2-4ac
Δ = -162-4·1·61
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{3}}{2*1}=\frac{16-2\sqrt{3}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{3}}{2*1}=\frac{16+2\sqrt{3}}{2} $
| 4(x+3)+2x=7(x-2)-6 | | 64+97+x+64+27=180 | | 1/2(4-2x)=2-2x | | 11x-4+2x=13x+5-9 | | G=5/2(p-53) | | -16x^2+128x=87 | | y^2-16y+66=5 | | 3x+5-2x=-3(x+2)+4x | | -8.5=6.7t-4.9t^2 | | (2x+6)(2x+4)=52 | | 5•z=35 | | 50g=1000 | | 4(x-6)=4(x-5) | | 5/3+1/5=1/x | | 2(3.4+1.5x)=24.8 | | p/5=5.3 | | 8y=5y+25 | | 10r=3.14r^2 | | 2(4x+2)(x−1)=0 | | 88+x=167 | | 64+x=125 | | 9v-5v=28 | | 3.72=d-2.5 | | 2x+5(x-5)=24 | | x-47=8 | | 7y-5-2y=10 | | 1/2x+4=2/4x | | 200=x | | 10x+3x^2=0 | | 5x+7-2x=3x-4 | | 50x+15x^2=0 | | 16+n=17n |